A GUIDE TO THE
TRINITY AMPUTATION AND PROSTHESIS EXPERIENCE SCALES (TAPES)

Dublin Psychoprosthetics Group: www.tcd.ie/psychoprosthetics

Dr. Pamela Gallagher, Senior Lecturer in Psychology, Faculty of Science and Health, School of Nursing, Dublin City University, Dublin 9, Ireland.
E-mail: pamela.gallagher@dcu.ie
Tel: +353-1-7008958

Dr. Deirdre Desmond, Lecturer, Department of Psychology, National University of Ireland, Maynooth, Ireland.
E-mail: deirdre.desmond@nuim.ie
Tel: +353-1-6081453

Prof. Malcolm MacLachlan, Associate Professor of Psychology, School of Psychology, University of Dublin, Trinity College, Dublin 2, Ireland.
E-mail: Malcolm.maclachlan@tcd.ie
Tel: +353-1-6081453
Description of TAPES

The TAPES is a multidimensional assessment designed to facilitate examination of the psychosocial processes involved in adjusting to a prosthesis, the specific demands of wearing a prosthesis and the potential sources of maladjustment. The TAPES comprises a Psychosocial Scale with three factor analytically derived subscales consisting of five items each (General Adjustment, Social Adjustment, and Adjustment to Limitation). The second section consists of an Activity Restriction Scale incorporating three factor analytically derived subscales with four items each (Functional, Social and Athletic Restriction). The third section concerns Satisfaction with the Prosthesis and comprises ten items, which are subdivided into three factor analytically derived scales, the Functional, Aesthetic and Weight characteristics of the prosthesis. The fourth section explores the experience of phantom limb pain, residual limb pain, and other medical conditions not related to the amputation. Each of these is subdivided into questions relating to how often it is experienced, how long each episode lasts, how the level of pain could be described and the extent to which it interferes with their daily lifestyles. This section also incorporates two items requesting respondents to rate their health and physical capabilities. Overall, the TAPES consists of 54 items and administration time is approximately 15 minutes. A further description of the development of the TAPES and a review of salient psychometric data are published in:

A copy of the TAPES can be downloaded and freely copied for teaching, clinical and/or research purposes from our webpage at: www.tcd.ie/psychoprosthetics

If you are intending to use the TAPES, we would ask that you complete the TAPES Users’ Brief Project Description Form and return to pamela.gallagher@dcu.ie

If you have any queries regarding the TAPES, please contact: pamela.gallagher@dcu.ie
Rationale for TAPES

To truly capitalise on the current rate of advancement in the development of limb prostheses, it is important to attend not only to the physical and technological factors which play a fundamental role, but also the social and psychological issues facing people who will ultimately be using the prescribed technology.\(^1\) The considerable variability in people’s adjustment to limb loss and subsequent prosthesis usage has resulted in a search for a method to investigate level of adjustment to a prosthesis and the factors related to prosthetic use. At the time of the development of the Trinity Amputation and Prosthesis Experience Scales (TAPES), there was no multidimensional psychometric assessment tool specific to limb loss that was theoretically and empirically derived and would allow these issues to be part of a routine assessment. Its theoretical and empirical foundation, and the preliminary demonstration of good reliability and validity argue for its applicability as a supplement to clinical assessment and its contribution as a research tool.\(^2\)

The aim of the TAPES is to enable an examination of the psychosocial processes involved in adjusting to a prosthesis, the specific demands of wearing a prosthesis and the potential sources of maladjustment. The intention is to provide a mechanism that will allow the assessment and planning of future care programmes to be more efficient and effective. The TAPES has been used in both clinical and research contexts to facilitate the exploration of the relationships between the different variables and the identification of those factors, which promote successful rehabilitation and adjustment to wearing a prosthesis and those which interfere. According to Desmond and MacLachlan (2002)\(^3\), equipping health care professionals with information from this type of psychometric assessment will further enhance their understanding of the user’s perspective and allow for more collaborative working relationships.

The investigation of the psychometric properties of the TAPES and its application to different client groups is ongoing. See www.tcd.ie/psychoprosthetics for a complete listing of projects and publications from the Dublin Psychoprosthetics Group.

A Selection of Publications of *Empirical* Research with TAPES

Peer Reviewed Journal Publications

Unpublished Dissertations

McGregor, L. (2004) *Do positive meanings and thoughts about the amputated limb effect the adjustment of amputees?* MSc Health Psychology: Queen Margaret University College in Edinburgh.

Ongoing Work with TAPES

In addition to the ongoing work of the Dublin Psychoprosthetics Group with the TAPES (see www.tcd.ie/psychoprosthetics), it is being used by varying professionals in different contexts. This list gives a flavour of where and how the TAPES is being used. It is not exhaustive as other clinicians and researchers are also using the TAPES. A complete list is available from pamela.gallagher@dcu.ie

- Rob Chatfield (OpCare, UK) and David Henderson Slater (Nuffield Orthopaedic Centre, Oxford)
 Using the TAPES to explore psychosocial outcomes and clinical practice.

- Touch Bionics (www.touchbionics.com).
 Using the Psychosocial Adjustment Subscales of TAPES as part of the monitoring of early fittings of the I-LIMB Hand. “The Touch Bionics i-LIMB™ Hand offers users a step-change in functionality and performance, enabling patients to do more with their prosthetic hand. For example, the i-LIMB Hand has individually articulating fingers, a rotating thumb and a range of grip patterns. All these features are combined in a hand that is more anatomically correct than any other hand available.” (www.touchbionics.com)

- Craig Murray PhD, School of Psychology, University of Manchester.
 E-mail: craig.murray-2@manchester.ac.uk
 TAPES is being used as part of a protocol to investigate the use of immersive virtual reality as a treatment for amputees' phantom limb pain.

- Franco Franchignoni MD, Unit of Occupational Rehabilitation and Ergonomics, Rehabilitation Institute of Veruno, Fondazione Salvatore Maugeri, Clinica del Lavoro e della Riabilitazione, IRCCS, Veruno, Italy.
 E-mail: ffanchignoni@fsm.it
 Translated TAPES into Italian

- Wieland Kaphingst, Dipl.-Ing (BMT), OMM, CPO (EC), CP (USA), Director of Clinical Research & Education, (Leiter der Anwendungsforschung/Weiterbildung), Bauerfeind Inc., Kennesaw, GA, USA (www.Bauerfeind.com)
 E-mail: Wieland.Kaphingst@bauerfeind.com
 The University of Münster (Prof. H.H. Wetz) and Bauerfeind prosthetics (www.bauerfeind.com) are researching the impact of CAD CAM socket design. The TAPES is being used to understand what impact the different sockets may have on the amputee's perception of quality of life with the prosthesis.

- Richard Neal, OpCare, Northampton Artificial Limb Service. Billing House. Northampton General Hospital, Northampton. NN1 5BD.
 E-mail: Richard.Neal@opcare.co.uk
 TAPES is being used to measure the effectiveness of the service they provide. TAPES will be completed at the start of a new episode of care/ prescription (e.g.
new prosthesis, new socket, or new change of prescription). The questionnaire will be repeated three months after delivery.

- Brian O’Neill, Clinical Psychologist, Southern General Hospital, Glasgow G51 4TF, Scotland.
 E-mail: Brian.O'Neill@sgh.scot.nhs.uk
 Using the ‘Activity Restriction’ and ‘Satisfaction with the Prosthesis subscales of the TAPES’ to investigate prosthetics outcome in clinical setting.

- Anton Johannesson, CPO, Department of Neuroscience and Locomotion, Psychiatry, Linkoping University, Sweden & Ortopedteknik AB, Centralsjukhuset, SE-291 85 Kristianstad, Sweden.
 E-mail: aj.otab@telia.com
 Translated TAPES into Swedish & is currently undertaking research entitled: Activities with lower limb prostheses – a prospective cohort study of use and activity.

- Coalition of Amputee in Sweden are currently planning a study which will involve the administration of the TAPES to their members.

- Carla Crawford, Superior Health School of Alcoitão, Portugal.
 E-mail: carla.crawford@clix.pt
 Translated TAPES into Portuguese in a project entitled: Contribution to the cultural validation and adaptation of a measuring instrument, TAPES.

- Nelson Figueira, Superior Health School of Alcoitão, Portugal.
 The application of the TAPES in a characterization study of the Portuguese amputee population.

- Jackie Stepien-Hulleman, Flinders University, Department of Rehabilitation and Aged Care, Repatriation General Hospital, Daws Rd, Daw Park, SA 5041, Australia. E-mail: Jacqueline.Stepien-Hulleman@rgh.sa.gov.au

- Toby Carlsson SRPros/Orth MBAPO, Pace Rehabilitation Ltd, UK. (www.pacerehab.com). E-mail: tcarlsson@pacerehab.com
 Effects of advanced multidisciplinary interventions in prosthetic rehabilitation – Can they be measured? A Pilot Study.

- Richard Cuddihy, Chartered Clinical Psychologist, Artificial Limb and Appliance Service (ALAS), Cardiff and Vale NHS Trust, Rookwood Hospital, Llandaff, Cardiff, CF5 2YN, Wales.
 E-mail: Richard.Cuddihy@CardiffandVale.wales.nhs.uk
 To use the TAPES as part of a clinical assessment in order to screen for difficulties and explore adjustment and artificial limb use, to look more closely for psychological factors in repeat technical presentations and to use the measure to “link” psychological factors and artificial limb use as part of normal assessment.
o Sarah A. Deans, Lecturer, NCTEPO, University of Strathclyde, Scotland.
 E-mail: sarah.deans@strath.ac.uk
 Using the TAPES in a study explore amputees physical activity and quality of life.

o Liselotte Hermansson, Reg. Occ. Ther., PhD. Department of Prosthetics and Orthotics, Örebro University Hospital, SE 701 85 Örebro, Sweden.
 E-mail: Liselotte.Hermansson@orebroll.se
 To evaluate a new electric hand protheses (Touch EMAS) using the TAPES as a measure of the persons' health related quality of life.

o Sisary Kheng. Cambodian School of Prosthetics and Orthotics (CSPO). Calmette Hospital, Monivong Blvd, P.O. Box: 122, Phnom Penh, Cambodia
 Email: ksisary@cambodiatrust.org.kh
 Measuring adjustment to disability in amputees in Cambodia. This involves the translation and preliminary validation of the TAPES measure in Cambodia.

o Jennifer Unwin, Psychology Service manager, Lancashire Teaching Hospitals NHS Trust.
 E-mail: Jen.Unwin@lthtr.nhs.uk
 A prospective study of the role of hope in predicting adjustment in new lower limb amputees.

o Bob Watts, Dorset Orthopaedic, UK.
 E-mail: BobW@dorset-ortho.co.uk
 The effects of silicone on a user’s self esteem (before treatment, and at 3 and 6 month follow up).
Scoring the Trinity Amputation and Prosthesis Experience Scales (TAPES)\(^4\)

Scoring for People with Lower Limb Amputation:

The TAPES is scored manually by simply adding up the values (see attached TAPES with scoring included). There are nine subscale scores, which do not include the pain questions. We do not recommend one overall score but nine individual scores. Some items are positively loaded and some are negatively loaded (see attached TAPES with scoring included). You can tell this by the direction of the scoring.

The TAPES subscale scores are calculated as follows:

Psychosocial Adjustment subscales
- **General Adjustment:** Add the values corresponding to items 1-5 in Part 1 (p3)
- **Social Adjustment:** Add the values corresponding to items 6-10 in Part 1 (p3)
- **Adjustment to Limitation:** Add the values corresponding to items 11-15 in Part 1 (p3)

High scores on these subscales are indicative of adjustment

Activity Restriction subscales
- **Athletic Activity Restriction:** Add the values corresponding to items a-d in Part 1 (p4)
- **Functional Restriction:** Add the values corresponding to items e-h in Part 1 (p4)
- **Social Restriction:** Add the values corresponding to items i-l in Part 1 (p4)

High scores on these subscales are indicative of activity restriction

Satisfaction with Prosthesis subscales
- **Aesthetic Satisfaction:** Add the values corresponding to items i-iv in Part 1 (p5)
- **Weight Satisfaction:** The value corresponding to item v in Part 1 (p5)
- **Functional Satisfaction:** Add the values corresponding to items vi-x in Part 1 (p5)

High scores on these subscales are indicative of satisfaction with prosthesis

We are currently developing norms for the TAPES. At the moment, each score is compared against the group average and/or over time.

Scoring for People with Upper Limb Amputation:

The TAPES was originally developed for people with lower limb amputations. However, given the dearth of specific outcome measures for people with an upper limb amputation, as a first step Desmond and MacLachlan (2005) investigated the factorial composition of the TAPES for use with people with acquired upper limb amputations. Because experiences differ between users of lower and upper limb prosthetics, the ways of assessing these experiences also needs to differ. You can use the same ‘Camera’, but you need a different lens. It is the same questionnaire with the same items but it makes sense of people’s experience in different ways. Therefore, it has a different factor structure with items grouped into different subscales.

The factor structure emerging and a preliminary scoring scheme are as follows.

Psychosocial Adjustment subscales (Note that item 10 is omitted for people with an upper limb amputation)
- **General Adjustment:** Add the values corresponding to items 1, 2, 5 in Part 1 (p3)
- **Social Adjustment:** Add the values corresponding to items 6-9 in Part 1 (p3)
- **Adjustment to Limitation:** Add the values corresponding to items 11-15 in Part 1 (p3)
- **Optimal Adjustment:** Add the values corresponding to items 3-4 in Part 1 (p3)

High scores on these subscales are indicative of adjustment

Activity Restriction subscales
- **Athletic Activity Restriction:** Add the values corresponding to items a, c, d in Part 1 (p4)
- **Social Restriction:** Add the values corresponding to items i-j in Part 1 (p4)
- **Mobility Restriction:** Add the values corresponding to items b, e-h in Part 1 (p4)
- **Occupational Restriction:** Add the values corresponding to items k-l in Part 1 (p4)

High scores on these subscales are indicative of activity restriction

Satisfaction with Prosthesis
Add the values corresponding to items i-x in Part 1 (p5)
High scores on this scale is indicative of satisfaction with prosthesis

This factor analysis was based on predominantly male population of upper limb amputations acquired through war related injuries. Therefore, as identified by Desmond & MacLachlan (2005) further research is required to investigate the replicability of this factor structure. The Activity Restriction Subscale of the TAPES requires ongoing refinement to include relevant items such as using a knife and fork, cutting fingernails, tying a necktie, tying shoes etc as a means of enhancing its applicability and specificity to this population. It is also important that there is further research on the specificity and appropriateness of the items for this client group.

We would like to actively collaborate with organisations that have access to this population to investigate this further. Please contact:
Pamela Gallagher – E-mail: Pamela.Gallagher@dcu.ie
Deirdre Desmond – E-mail: Deirdre.Desmond@nuim.ie

TRINITY AMPUTATION AND PROSTHESIS EXPERIENCE SCALES (TAPES)

Scoring for People with Lower Limb Amputation: The TAPES is scored manually by simply adding up the values on the items for each subscale (see attached TAPES with scoring included).

<table>
<thead>
<tr>
<th>Name:</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
</table>

Psychosocial Adjustment subscales

- **General Adjustment:** In Part 1 (p3) add the values of:
 Item 1 + Item 2 + Item 3 + Item 4 + Item 5
 A high score is indicative of positive adjustment

- **Social Adjustment:** In Part 1 (p3) add the values of:
 Item 6 + Item 7 + Item 8 + Item 9 + Item 10
 A high score is indicative of positive adjustment

- **Adjustment to Limitation:** In Part 1 (p3) add the values of:
 Item 11 + Item 12 + Item 13 + Item 14 + Item 15
 A high score is indicative of positive adjustment

Activity Restriction subscales

- **Athletic Activity Restriction:** In Part 1 (p4) add the values of:
 Item (a) + Item (b) + Item (c) + Item (d)
 A high score is indicative of activity restriction

- **Functional Restriction:** In Part 1 (p4) add the values of:
 Item (e) + Item (f) + Item (g) + Item (h)
 A high score is indicative of activity restriction

- **Social Restriction:** In Part 1 (p4) add the values of:
 Item (i) + Item (j) + Item (k) + Item (l)
 A high score is indicative of activity restriction

Satisfaction with Prosthesis subscales

- **Aesthetic Satisfaction:** In Part 1 (p5) add the values of:
 Item i + Item ii + Item iii + Item iv
 A high score is indicative of satisfaction with prosthesis

- **Weight Satisfaction:** In Part 1 (p5) the value of:
 Item v
 A high score is indicative of satisfaction with prosthesis

- **Functional Satisfaction:** In Part 1 (p5) add the values of:
 Item vi + Item vii + Item viii + Item ix + Item x
 A high score is indicative of satisfaction with prosthesis
Summary of TAPES Psychosocial Adjustment subscales results

<table>
<thead>
<tr>
<th>Researchers</th>
<th>N</th>
<th>Method of data collection</th>
<th>Amputation</th>
<th>Age Mean (SD)</th>
<th>Gender</th>
<th>Amputation Aetiology</th>
<th>General Adjustment</th>
<th>Adjustment to Limitation</th>
<th>Social Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallagher & MacLachlan, (2000)</td>
<td>104</td>
<td>Post al survey 3.8% partial foot; 48.1% BK; 3.8% TK; 32.7% AK; 5.8% HD; 5.8% Bilateral</td>
<td>45.3 (18.9) Range 18-84</td>
<td>75% M; 25% F</td>
<td>49% Accident; 25% Cancer; 6.7% Congenital; 8.7% PVD; 1% Diabetes; 9.6% Other; 1% not specified</td>
<td>18.9 (4.7)</td>
<td>13.7 (1.1)</td>
<td>19.5 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Gallagher & MacLachlan (2004)</td>
<td>63</td>
<td>Postal survey 39.7% AK; 57.1% BK</td>
<td>47.5 (18.4) Range 19-84</td>
<td>69.8% M; 30.2% F</td>
<td>11.1% Congenital; 22.2% Cancer; 42.9% Trauma; 23.8% Other</td>
<td>19.11 (5.03)</td>
<td>13.13 (5.45)</td>
<td>19.00 (4.45)</td>
<td></td>
</tr>
<tr>
<td>O’Neill et al. (2005)</td>
<td>97</td>
<td>Survey 72% BK; 5.2% TK; 22.7% AK</td>
<td>60.6 (14.0) Range 27-87</td>
<td>77% M; 23% F</td>
<td>29.9% PVD 22.7% Diabetes 5.2% Cancer 26.8% Accident 15.5% Other</td>
<td>19.0 (4.5)</td>
<td>11.2 (4.9)</td>
<td>19.9 (3.9)</td>
<td></td>
</tr>
<tr>
<td>Price (2005)</td>
<td>50</td>
<td>Survey 80% BK; 20% AK</td>
<td>56.6</td>
<td>Range 32-80</td>
<td>74% M; 26% F</td>
<td>70% Disease; 24% Trauma; 6% Congenital</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atherton & Robertson (2006)</td>
<td>67</td>
<td>Structure d interview 64.2% BK; 23.8% AK; 12.0% Bilateral</td>
<td>64.2 (14.3) Range 32-97</td>
<td>76% M; 24% F</td>
<td>34.3% Vascular disease; 32.8% Diabetes; 16.5% Trauma; 4.5% Cancer; 11.9 Other</td>
<td>19.0 (4.4)</td>
<td>11.1 (5.2)</td>
<td>20.7 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Desmond & MacLachlan (2006)</td>
<td>694</td>
<td>Postal survey 40% AK; 48.4% BK; 1.8% TK; 7.8% Bilateral</td>
<td>74.1 (12.2) Range 26-92</td>
<td>96.7% M; 3.3% F</td>
<td>81.3% Traumatic injury; 16.8% Disease</td>
<td>20.15 (3.94)</td>
<td>12.25 (4.92)</td>
<td>19.57 (3.97)</td>
<td></td>
</tr>
<tr>
<td>Seidel, Lange, Wetz and Heuft (2006)</td>
<td>75</td>
<td>Survey 44% BK; 37.3% AK; 9.3% TK.</td>
<td>51.8 (16.1) Range 18-80</td>
<td>64% M; 36% F</td>
<td>34.7% Trauma; 26.7% PVD; 8% Diabetes; 13.3% Cancer; 12.6% Other</td>
<td>21.1 (4.5)</td>
<td>18.0 (6.0)</td>
<td>19.7 (5.1)</td>
<td></td>
</tr>
<tr>
<td>Desmond, Chatfield, Henderson-Slater, Gallagher (2007)</td>
<td>89</td>
<td>Postal survey 61.8% BK; 33.7% AK; 4.5% TK.</td>
<td>1.1% 19-30; 3.7% 31-45; 27.0% 46-60; 33.7% 61-75; 31.5% 75+</td>
<td>69.7% M; 30.3% F</td>
<td>18.0% PVD 15.7% Diabetes 3.4% Cancer 35.2% Accident 27.3% Other</td>
<td>19.8 (4.2)</td>
<td>12.8 (5.5)</td>
<td>20.5 (3.5)</td>
<td></td>
</tr>
<tr>
<td>Gallagher, Horgan, Franchignoni, Giordano, & MacLachlan (2007)</td>
<td>145</td>
<td>Postal survey 50.3% BK; 21.1% TK; 35.8% BK; 11.7% Bilateral</td>
<td>60.5 (17.4)</td>
<td>68.3% M; 31.7% F</td>
<td>27.6% PVD; 26.2% Diabetes; 25.5% Trauma; 5.5% Infection; 4.8% Cancer; 2.8% Clot; 7.6% Other</td>
<td>19.3 (4.9)</td>
<td>11.0 (4.6)</td>
<td>19.7 (4.3)</td>
<td></td>
</tr>
</tbody>
</table>
Summary of TAPES Activity Restriction subscales results

<table>
<thead>
<tr>
<th>Researchers</th>
<th>N</th>
<th>Method of data collection</th>
<th>Amputation Age Mean (SD)</th>
<th>Gender</th>
<th>Amputation Aetiology</th>
<th>Athletic Restriction</th>
<th>Functional Restriction</th>
<th>Social Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallagher & MacLachlan, (2000)</td>
<td>104</td>
<td>Post al survey</td>
<td>45.3 (18.9) Range 18-84</td>
<td>75% M; 25% F</td>
<td>49% Accident; 23% Cancer; 6.7% Congenital; 8.7% PVD; 1% Diabetes; 9.6% Other; 1.9% not specified</td>
<td>5.8 (2.0)</td>
<td>3.3 (2.7)</td>
<td>1.7 (2.0)</td>
</tr>
<tr>
<td>Gallagher & MacLachlan (2004)</td>
<td>63</td>
<td>Postal survey</td>
<td>39.7% AK; 57.1% BK</td>
<td>47.45 (18.4) Range 19-84</td>
<td>69.8% M; 30.2% F</td>
<td>11.1% Congenital; 22.2% Cancer; 42.9% Trauma; 23.8% Other</td>
<td>6.37 (1.94)</td>
<td>3.65 (2.81)</td>
</tr>
<tr>
<td>O’Neill et al. (2005)</td>
<td>97</td>
<td>Survey</td>
<td>72% BK; 5.2% TK; 22.7% AK</td>
<td>60.6 (14.0) Range 27-87</td>
<td>77% M; 23% F</td>
<td>29.9% PVD; 22.7% Diabetes; 5.2% Cancer; 26.8% Accident; 15.5% Other</td>
<td>7.1 (1.5)</td>
<td>4.9 (2.6)</td>
</tr>
<tr>
<td>Price (2005)</td>
<td>50</td>
<td>Survey</td>
<td>80% BK; 20% AK</td>
<td>56.6 Range 32-80</td>
<td>74% M; 26% F</td>
<td>70% Disease; 24% Trauma; 6% Congenital</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Desmond & MacLachlan (2006)</td>
<td>694</td>
<td>Postal survey</td>
<td>40% AK; 48.4% BK; 1.8% TK; 7.8% Bilateral</td>
<td>74.1 (12.2) Range 26-92</td>
<td>96.7% M; 3.3% F</td>
<td>81.3% Traumatic injury; 16.8% Disease</td>
<td>7.3 (1.4)</td>
<td>5.7 (2.2)</td>
</tr>
<tr>
<td>Seidel, Lange, Wetz and Heuft (2006)</td>
<td>75</td>
<td>Survey</td>
<td>44% BK; 37.3% AK; 9.3% TK.</td>
<td>51.8 (16.1) Range 18-80</td>
<td>64% M; 36% F</td>
<td>34.7% Trauma; 26.7% PVD; 8% Diabetes; 13.3% Cancer; 17.3% Other</td>
<td>6.3 (2.0)</td>
<td>3.8 (2.6)</td>
</tr>
<tr>
<td>Desmond, Chatfield, Henderson-Slater, Gallagher (2007)</td>
<td>89</td>
<td>Postal survey</td>
<td>61.8% BK; 33.7% AK; 4.5% TK.</td>
<td>1.1% 19-30; 3.7% 31-45; 27.0% 46-60; 33.7% 61-75; 31.5% 75+</td>
<td>69.7% M; 30.3% F</td>
<td>18.0% PVD; 15.7% Diabetes; 3.4% Cancer; 35.2% Accident; 27.3% Other</td>
<td>6.9 (1.8)</td>
<td>4.8 (2.7)</td>
</tr>
<tr>
<td>Gallagher, Horgan, Franchignoni, Giordano, & MacLachlan (2007)</td>
<td>145</td>
<td>Postal survey</td>
<td>50.3% BK; 21% TK; 35.9% BK; 11.7% Bilateral</td>
<td>60.5 (17.4)</td>
<td>68.3% M; 31.7% F</td>
<td>27.6% PVD; 26.2% Diabetes; 25.5% Trauma; 5.5% Infection; 4.8% Cancer; 2.8% Clot; 7.6% Other</td>
<td>6.9 (2.0)</td>
<td>5.2 (2.5)</td>
</tr>
</tbody>
</table>
Summary of TAPES Prosthesis Satisfaction subscales

<table>
<thead>
<tr>
<th>Researchers</th>
<th>N</th>
<th>Method of data collection</th>
<th>Amputation Aetiology</th>
<th>Gender</th>
<th>Weight Satisfaction Mean (SD)</th>
<th>Functional Satisfaction Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallagher & MacLachlan, (2000)</td>
<td>104</td>
<td>Post al internet survey</td>
<td>49% Accident; 23% Cancer; 6.7% Congenital; 8.7% PVD; 1% Diabetes; 9.6% Other; 1.9% not specified</td>
<td>14.6 (3.3)</td>
<td>3.6 (1.1)</td>
<td>18.26 (4.2)</td>
</tr>
<tr>
<td>Murray & Fox (2002)</td>
<td>44</td>
<td>Internet survey</td>
<td>36.4% Accident; 36.4% Cancer; 6.8% Congenital; 4.5% PVD; 2.3% Diabetes; 13.6% 'Other'</td>
<td>13.4 (3.6)</td>
<td>2.9 (1.1)</td>
<td>20.9 (12.8)</td>
</tr>
<tr>
<td>Gallagher & MacLachlan (2004)</td>
<td>63</td>
<td>Postal survey</td>
<td>11.1% Congenital; 22.2% Cancer; 42.9% Trauma; 23.8% Other</td>
<td>14.47 (3.7)</td>
<td>3.52 (1.2)</td>
<td>17.23 (5.6)</td>
</tr>
<tr>
<td>O’Neill et al. (2005)</td>
<td>97</td>
<td>Survey</td>
<td>29.9% PVD 22.7% Diabetes 5.2% Cancer 26.8% Accident 15.5% Other</td>
<td>14.1 (3.6)</td>
<td>2.9 (1.2)</td>
<td>13.8 (3.9)</td>
</tr>
<tr>
<td>Price (2005)</td>
<td>50</td>
<td>Survey</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Desmond & MacLachlan (2006)</td>
<td>698</td>
<td>Postal survey</td>
<td>81.3% Traumatic injury; 16.8% Disease</td>
<td>14.83 (3.3)</td>
<td>3.24 (1.23)</td>
<td>18.10 (4.7)</td>
</tr>
<tr>
<td>Seidel, Lange, Wetz and Heuft (2006)</td>
<td>75</td>
<td>Survey</td>
<td>34.7% Trauma; 26.7% PVD; 8% Diabetes; 13.3% Cancer; 17.3% Other</td>
<td>14.1 (3.5)</td>
<td>-</td>
<td>17.1 (5.1)</td>
</tr>
<tr>
<td>Gallagher, Horgan, Franchignoni, Giordano, & MacLachlan (2007)</td>
<td>145</td>
<td>Postal survey</td>
<td>27.6% PVD; 26.2% Diabetes; 25.5% Trauma; 5.5% Infection; 4.8% Cancer; 2.8% Clot; 7.6% Other</td>
<td>15.1 (3.2)</td>
<td>3.2 (1.3)</td>
<td>18.5 (4.8)</td>
</tr>
<tr>
<td>Desmond, Chatfield, Henderson-Slater, Gallagher (2007)</td>
<td>89</td>
<td>Postal survey</td>
<td>18.0% PVD 15.7% Diabetes 3.4% Cancer 35.2% Accident 27.3% Other</td>
<td>14.49 (3.2)</td>
<td>3.3 (1.1)</td>
<td>17.9 (4.2)</td>
</tr>
</tbody>
</table>
TRINITY AMPUTATION AND PROSTHESIS EXPERIENCE SCALES (TAPES)
USERS’ BRIEF PROJECT DESCRIPTION FORM

*If you are intending to use the TAPES, we would appreciate if you would complete the following form and send it to: pamela.gallagher@dcu.ie

CONTACT DETAILS:

Name:

Organisation:

Address:

E-mail:

Telephone:

Short description of project (to include information on setting and sample):

If you have any queries on using the TAPES, please contact pamela.gallagher@dcu.ie
Dublin Psychoprosthetics Group

The Dublin Psychoprosthetics Group is a unique multidisciplinary group of researchers and clinicians interested in applying many and varied aspects of psychology to prosthetic use, especially in regard to the rehabilitation of people with amputations. It is a co-directed project between Trinity College Dublin, Ireland, Dublin City University, Ireland and the National University of Ireland, Maynooth. Contact details for the co-directors are:

Dr Pamela Gallagher,
Senior Lecturer in Psychology,
Dublin City University, Ireland.
pamela.gallagher@dcu.ie

Dr Deirdre Desmond,
Lecturer in Psychology,
National University of Ireland,
Maynooth, Ireland.
deirdre.desmond@nuim.ie

Prof Malcolm MacLachlan
Assoc Prof of Psychology,
Trinity College Dublin, Ireland.
malcolm.maclachlan@tcd.ie

The Dublin Psychoprosthetics Group also has many local and international associates who are leading authorities in their areas, with whom we are collaborating. A list of these collaborations and projects and a complete listing of publications and conference presentations can be found on our website (www.tcd.ie/psychoprosthetics). Some of our most recent publications include:

We are interested in facilitating colleagues who may wish to use the Trinity Amputation and Prosthesis Experience Scales (TAPES). This instrument is intended for clinical and research use and measures how well individuals adjust to wearing a prosthesis.

We are also interested in establishing links with colleagues in other countries, including 'developing countries', who may wish to collaborate with us on future projects.