Simulated Wind Driven Rain (WDR) will be introduced to walls’ sheathing at window’s sill height (Region of interest)

- Incorporating a fabric with uniform water distribution and redistribution
- Introduction of rain penetration amounts based on prior research work that correlates WDR to Water Ingress into Walls from a typical interface defect

Wall Panels (General)
- Six 4’x8’ Wall Panel Specimens
- All R-40 (effective)
- Advanced Framing System

Instrumentation
- Test panels: moisture pins, thermistors, relative Humidity, and moisture detection tape sensors
- Boundary conditions: Outdoor temperature, relative humidity, wind speed and direction, wind-driven rain, solar radiation and indoor temperature and relative humidity conditions
- Record the hygrothermal performance (every five minutes) and boundary conditions (every one minute) data

MOTIVATION
- Climate Change, Aggressive targets to lower CO2 emission
- Net-Zero Emission, Passive Design, ...
- More stringent Energy Standards & Codes
- Durability of super-insulated wall system initiative is unknown
- Hygrothermal design of walls with better drying capability

OBJECTIVE
- To compare Drying Capability of the various walls under water ingress from a typical interface defect
- Will lead to choosing the best alternative, and/or improving each or the best option among the rest
- ...by enhancing the “Drying Capability” of the walls
- Results could also be used to validate or enhance the existing computer hygrothermal models (HAMFit)

METHODOLOGY
- Research based on Long-term field Experimental study (at least one-year)
- Wall Assemblies will be built, instrumented and installed on the South-East side of BCIT Building Envelope Test Facility (BETF),
- Located in Burnaby, British Columbia, to be exposed to actual exterior weather conditions (similar to Marine Climate Conditions)

Wall Assemblies (Types)

Type A: Double Stud with Dense Fill Cellulose Insulation
- Exterior:
 - B1t thresh. Fiber Cement Board
 - 19mm Ventilated Air Cavity
 - Tyvek Housewrap
 - 18mm Plywood Sheathing Board
 - 8mm Dense Fiber Insulation batt, 244 Studs
 - 24mm Gap between Dense Fill Insulation batts
 - 18mm Ventilated Air Cavity
 - Type A Cement Board
- Interior:
 - 13mm Opus Board Interior Sheathing

Type B: Double Stud with GF Batt Insulation
- Exterior:
 - 8mm Fiber Cement Cladding
 - 19mm Ventilated Air Cavity
 - Tyvek Housewrap
 - 13mm Plywood Sheathing Board
 - 8mm Glass Fiber Batt Insulation batt, 244 Studs
 - 24mm Gap between Glass Fiber Batt Insulation batts
 - 8mm Fiber Cement Cladding
- Interior:
 - 13mm Opus Board Interior Sheathing

Type C: Double Stud Wall with Low Density Sprayfoam and Glassfiber Batt Insulation
- Exterior:
 - 8mm Fiber Cement Cladding
 - 19mm Ventilated Air Cavity
 - Tyvek Housewrap
 - 13mm Plywood Sheathing Board
 - 51mm Low Density Sprayfoam
 - 39mm Glass Fiber Batt Insulation batt, 244 Studs
 - 10mm Gap between Glass Fiber Batt Insulation batts
 - 8mm GF Batt Insulation batt, 244 Studs
 - 8mm Polyethylene
 - 13mm Opus Board Interior Sheathing
- Interior:
 - 13mm Opus Board Interior Sheathing

EXPERIMENTAL SETUP

Wall Panels (General)
- Six 4’x8’ Wall Panel Specimens
- All R-40 (effective)
- Advanced Framing System

Experimental Variables
- Various VB/VR strategies
- Insulation Types
- Wall Assemblies Configuration
- Water Penetration Scenarios

Boundary Conditions
- Interior boundary conditions: BETF air conditions (45-55% RH, 21°C)
- Outdoor Boundary Conditions: Real climate exposure (Burnaby, BC)

Data Analysis

- Wetting & Drying trends of critical regions extracted from recorded data through DAQ
- Comparative analysis between walls
 - Mould, RHT, ICEM, ... Moisture Indicators
 - Or will be initiated (if needed)
- Conclusion over better choice of variables (Vapor Control, Insulation Type, and configuration of each) will be drawn
- Variables fed to hygrothermal models to validate the data as well as the models