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Abstract – Whole-building simulation and field measurements were conducted at two levels: at the whole building 
level and at the local-space level, at a landmark building in Vancouver, Canada. The analysis shows that calibrated 
whole-building simulations are accurate enough and useful for the assessment of natural ventilation. For large complex 
spaces, the analysis needs to be coupled with computational fluid dynamics to predict thermal stratification. In the case 
study building, such coupling was not critical, because changes in the natural ventilation original design intent caused 
a large atrium to be decoupled from the rest of the building, which was detrimental to the effectiveness of the natural 
cooling of the building in the summer. 

1. Introduction 
Arguably, airflow modeling is the weakest link in whole-building simulation modeling. The effects of 
proper airflow modeling are less critical in designing mechanically heated/cooled buildings, and in airtight 
and adequately compartmentalized buildings. However, a proper engineering of natural ventilation designs 
is required when passive, natural ventilation is a critical strategy to achieve performance targets. The case 
study building was designed to rely entirely on natural ventilation for cooling. The motivations for this study 
were two-fold: 1) we learned that the design team placed great effort in designing a passive building with 
adequate natural ventilation, and 2) we learned that the initial design intent evolved during the design and 
construction process, resulting in potential compromises to the effectiveness of the natural ventilation for 
cooling. Our ultimate goal was to try to understand the effectiveness of the natural ventilation strategies and 
the impacts of the changes to the original intent. As such, we monitored the indoor conditions and the 
operation of doors and windows during two summer weeks in August (the only time available for us), and 
used whole-building simulation (WBS) to help as an exploration tool.  

2. Airflow Network Modeling 
Modern whole-building simulation models include an airflow network (AFN) modelling engine to simulate 
airflow across spaces. AFN models idealize a building as a collection of zones, such as rooms, hallways, & 
duct junctions, joined by flow paths representing doors, windows, fans, ducts, etc. Three key AFN modeling 
assumptions are: 1) it assumes that the resistance to airflow of a flow-limiting path between building zones 
is much greater than the resistance to airflow of the zones themselves. 2) The airflow within a zone is zero, 
which means that the pressure varies only hydrostatically within a building zone. 3) The temperatures within 
a given zone are uniform.  



Buoyancy and thermal stratification in large spaces are modelled by stacking zones vertically, and 
connecting the stacked zone with horizontal virtual surfaces. Solar irradiation passes through virtual surfaces 
down to the bottom zone, and long wave radiation and convective heat transfer take place at each stacked 
zone, to simulate the warming up of air as it moves upwards. Therefore, the air stack modelling assumes 
one-way flow upwards only, which is a safe assumption when modeling chimneys for example. However, 
in large spaces such as atriums and auditoriums sub-zonal airflow patterns may involve air recirculation, 
due to a combination of high pressures at the top of the space and/or reverse buoyancy due to air contact 
with cold surfaces. In general, when detailed characterization of airflow circulation within a space is 
required, a higher level of granularity modeling is needed, such as zonal models or computational fluid 
dynamics (CFD). CFD modelling is able to consider complex turbulence behaviors that are the norm in 
indoor spaces. 

3. The case Study Building 
The case study building is the visitors centre for the botanical garden in Vancouver, Canada. The design of 
the building is inspired by a local orchid plant, with its roof mimicking its petals and the central atrium and 
oculus mimicking its stem. Tables 1 and 2 show the main spaces, as well as their function and occupancy. 
The whole-building simulation model was originally created in IES-VE by the mechanical design team [1], 
but was fine-tuned and improved to represent the actual building by the authors. The building is one-storey 
with a footprint of 1765 square meters.  

Table 1. Space functions      Table 2. Building occupancy groups 

 

The natural ventilation design involved orienting the building to maximize cross-ventilation, and enhancing 
stack and buoyancy airflows through operable windows and a central atrium with an oculus at the top acting 
as glazed chimney that draws warm air from the building. The design follows passive design practices such 
as proper shading, high thermal mass, an extensive green roof, operable windows, and an integrated natural 
ventilation strategy. Furthermore, the operation of the building uses automated windows synchronizing the 
opening/closing of windows at the perimeter and at the atrium oculus. 

4. Instrumentation 
Two levels of monitoring were followed: 1) Whole-building level (2 weeks) - indoor environmental (air 
temperature, relative humidity, CO2) and window/door state sensors at the main spaces, 2) local level (2 
days) - higher granularity temperature stratification, air speed, and oculus open/close operation 
measurement at the atrium. Figure 1a shows the placement of the sensors for level 1 monitoring, as well as 
the intended natural airflow paths. Figure 1b shows temperature/anemometer instrumentation for level 2 
monitoring at the atrium. A weather station was also placed on the roof of the building. The main challenge 
in instrumenting the atrium/chimney was protecting the sensors from direct solar irradiation, while not 
interrupting airflows. To that effect, a reflective shield was placed to protect the sensors at the top. However, 
the intermediate sensors were not shielded in order not to obstruct the airflow. They were instead carefully 
placed under the shaded area of the chimney.  



 

Figure 1. Instrumentation: a) whole building level, b) atrium level 

5. Natural ventilation modeling  
IES-VE uses AFN to model airflows. A main challenge in the modeling is the fact that all spaces in the 
building are tall with curvilinear heights ranging from about 3.5 meters to about 6.5 meters. The height of 
the atrium including its glazed oculus is 10 meters. Therefore, all the spaces were modeled as vertically 
stacked air nodes (Figure 2).  

 

Figure 2. Stacking of air nodes to model buoyancy using AFN model [1] 

5.1. Design and modelling challenges and hypotheses 

Aside from buoyancy and the typical challenges in modeling natural ventilation (characterizing airflow 
through openings and air-node topology/connectivity), the following challenges were identified in the 
design and the thermal-fluid airflow modeling:  

Design challenges – The original design used a large plenum connecting all the spaces at the top to collect 
warm air and channel it to the central chimney. However, due to privacy and acoustic concerns, the 
connectivity between spaces at the top was sealed. The only connection between the spaces and the chimney 
was through the doors at the corridors. However, most of the times, during events and summer camps these 
doors remained closed. As a result, the connection between spaces and the chimney became weak. Most 
importantly, the chimney became a short-circuiting path that draws air mainly from the main doors at the 
central atrium, thus bypassing the building!  

Modeling challenges – The occupancy for this building is mainly transient. The building acts as a gate for 
the botanical garden. The doors through the gate are at the atrium. These doors are meant to be opening and 
closing constantly during the day. Furthermore, in summer days the exterior doors at both sides of the atrium 



are left wide open, as well as the exterior doors at the food service. Therefore, at periods of high occupancy, 
the atrium acts like a large cross-ventilation shaft, semi-isolated from the rest of the building.  

Therefore, it was hypothesized that the intended natural airflows in Figure 1a are not substantiated. As a 
result, the natural ventilation of the main spaces is mainly single-sided, whereas the chimney draws air from 
the exterior doors in the atrium below, cooling it down and bypassing the rest of the building. To account 
for these challenges, the connectivity between spaces was carefully modelled, including logic to operate 
windows and doors according to both, the outdoor temperature and the occupancy schedules. 

5.2. Model calibration  

According to Figure 3a [2], model calibration was not to the highest level. Due to limitations imposed by 
the building owners, no surveys were applied to the building occupants. Uncertainty analysis was left as 
future work. The calibration/validation was done using the spaces temperatures and year-round energy data. 
Temperature wise, the aim of the model calibration was obtaining temperature patterns close to the actual 
ones. Energy wise, a year-round mechanical heating energy comparison was made between actual and 
simulated data (Figure 3b). The model was considered valid once the actual and simulated data was close 
enough using standard statistical metrics (e.g. ASHRAE Guideline 14-2014). Energy calibration was 
broken-down into systems and uses. The main discrepancy in energy consumption was found in December 
due to a high volume of visitors attending special events taking place in the garden. 

 
Figure 3. Model calibration: a) calibration level, b) total energy consumption [2] 

6. Results 
Whole-building year-round simulations used local weather data from the city of Vancouver for the same 
year the energy data was collected. Careful selection of system and thermostat temperature set points was 
necessary to match the real operation. These simulations were used for model calibration purposes and 
analysis at an aggregated level. For increased granularity, we studied typical sunny days when data was 
collected, and compared the measured room temperature data with the simulated data.  

6.1. Whole-building 

 

Figure 4. 2-week measured data, and comparison between measured and simulated temperatures for a sunny day 



Figure 4 shows the measured data over the two monitoring weeks, as well as a comparison between the 
measured and simulated data for two spaces in a typical sunny day. 

6.2. Atrium and chimney 

A measurement station was placed at the center of the atrium with a large extensible pole holding the 
loggers/sensors. The sensors/logger were placed at heights of 2, 3, 5, 7, and 8.5 meters from the ground. 
The top logger was right at the oculus. All windows were opened during the experiment, including those at 
the oculus. As indicated in Figure 5, the measurement station was moved horizontally at times indicated by 
the vertical lines. At about 10:00 hours all atrium doors were fully opened, and left open until about 12:14 
hours. At that moment, we requested the atrium doors to be closed until about 12:57, with a corresponding 
increase in temperatures. Between 12:57 and 14:09 half of the doors were open. At 14:09 all doors were 
fully opened again with a corresponding decrease in temperatures. At about 13:26 we moved the station to 
avoid direct solar radiation on the sensors. However, we could not avoid the sun to strike in two sensors 
HOBO#2 and HOBO#3. Therefore, the subsequent data from those sensors is invalid. Unfortunately, in 
measuring air speeds, at about 13:40 we lost connectivity of our sensors and the data was lost for about one 
hour. 

 

 

Figure 5. Measured atrium thermal stratification (top), atrium air speed (left), air speed at oculus windows (right) 

From Figure 5 it is clear that the temperatures in the atrium and chimney are highly dependent on the opening 
of the atrium exterior doors. Thermal stratification ranges from about 25°C to 32°C in the morning when 
the atrium doors are open, to about 27°C to 34°C when the door are closed, and about 26°C to 30°C in the 



afternoon when the doors are open again. Higher air speeds were observed in the afternoon at the oculus 
windows level, but The afternoon cooler temperatures are likely due to increased wind speed, and cross-
ventilation across the atrium and the chimney. Figure 6 shows the oculus surface temperature. 

 
Figure 6. The chimney oculus 

In Figure 7, simulated data from the same day at heights indicated in Figure 2 (right) shows the oculus air 
is cooler early in the morning, perhaps due to night-sky radiation, but it gets much warmer as the sun shines 
on it. However, as soon as the oculus windows are opened at 10:00 hours, the oculus cools down 
immediately! Surprisingly, in the simulations, the air flow is very effective in removing thermal 
stratification. 

 
Figure 7. Simulated atrium thermal stratification in a sunny day (left) and a cloudy day (right) 

7. Analysis and discussion 
The results demonstrate that AFN-integrated whole-building simulation can reliably predict airflows and 
indoor temperatures in the whole building under natural ventilation forces. However, local-level analysis at 
the atrium and chimney/oculus demonstrates that the accuracy of natural ventilation in predicting thermal 
stratification is low. Furthermore, complexities in the shape of the atrium and the oculus led to several 
observations affecting the accuracy of the AFN modeling as well as the measurements: 

 The shape of the chimney (atrium and oculus) is not optimized to enhance buoyancy. The atrium is wide 
open, and its chimney is wide and not very long. Therefore, there is little opportunity for the rising air 
to pick up heat from the walls, and enhance buoyancy.  

 The atrium draws air simultaneously from several directions (Figures 2 and 8). The amount of air 
coming from each direction is highly dependent on the opening and closing of doors, as well as the 
wind. This complicates the measurement and simulation of airflow patterns in the atrium.  

 The oculus at the top has the shape of an inverted container; therefore, its hot walls contribute little to 
the airflow. It is hypothesized that warm air at the very top accumulates and creates a stratified layer 
that overflows at the bottom. 

 It was observed that at high winds, air comes into the chimney (instead of going out), thus countering 
buoyancy. Perhaps this was the reason why the top of the atrium was kept cooler in the afternoon. This 
hypothesis would need to be confirmed with more data and detailed CFD simulations.     



 
Figure 8. Atrium chimney/oculus measuring and modeling complexities 

8. Conclusions and Further Work 
The case study demonstrates that AFN-integrated whole-building simulation modeling is a viable tool to 
help assess the performance of naturally ventilated buildings. However, for large complex spaces a higher 
level of modeling granularity is required. In this particular project, the inaccuracies introduced by the 
inaccurate atrium model were minimized because the atrium was actually de-coupled from the building, 
contrary to the initial design intent. Detailed CFD modeling of the atrium coupled with an outdoor CFD 
computational domain will help better understand the airflow patterns in the atrium. Such modeling will in 
turn help optimize the shape the oculus and the connectivity between the atrium and the building spaces to 
improve the natural ventilation effectiveness.   
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