SCHOOL OF **BCIT** CONSTRUCTION AND THE ENVIRONMENT

Performance Evaluation of Active Chilled Beam in **Cooling and Heating Operation under Actual** Field Boundary Condition

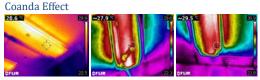
MOTIVATION

- SW1 Gateway Building at BCIT with Active Chilled Beams (ACB)
- High Performance LEED Gold Building with 250 units of ACB
- ACB used as Single Heating Device in Offices

Evaluation

- Occupants were found using Room Heaters and Fans
- Many perimeter offices were unable to achieve setpoint in winter •

OBJECTIVE


- To study few offices in real time and evaluate air velocity and air temperature in the occupied zone and at the ACB
- · To assess the risk of stratification and temperature gradient in heating mode
- To develop and validate a CFD model coupling an Active Chilled Beam and office under varying boundary conditions.
- To assess the ventilation efficiency by CFD modelling in cooling and heating mode

	METHO	DOLC	GY
	Measurements	CFD	1.
	Room Level	Office ACB C/D C/D	
	Field Testing Set Up Uncontrolled Callect Analyze	Couple Imputs & Boundary Conditions	10.0
		Solve	
	/ Validation / Data	Validate Model	
	ACB	Simulation	den etter
•	Field Experiments in 2 Offices at Gateway		
	Building, BCIT		
•	Data Collection for Summer and Winter		
•	CFD Model of Offices coupled with ACB		
•	ACB Characteristics, Room Air		
	Characteristics and Ventilation	Efficiency	India.

MEASUREMENTS

RESULTS

Discharge Air Velocity and Temperature (Heating)

	Stady State
Surface Temperatures (Hea	And
Sufface Temperatures (*C) 213 213 214 214 214 214 215 214 215 215 215 216 216 217 217 217 217 217 217 217 217	Window Burlson Temperature (C) 210 210 210 210 210 210 210 210
Discharge Air Velocity and Activery Wood at 2 line Way Mark Mark Mark	Temperature (Cooling) Average Temperature Biol 1 & 2

Green Value Strategies (GVS) Fund from the School of Construction and the Environment at the British Columbia Rohit Upadhyay- MASc. Institute of Technology (BCIT) Dr. Rodrigo Mora-Supervisor Room Air Distribution (Heating) Room Air Distribution (Cooling) Effect of Discharge Angle CFD Model (Heating) ACB CFD Model CFD Model (Cooling) Age of Air (Heating & Cooling) CONCLUSIONS

- Envelope performance (thermal performance, double-Façade, window operation) affect room air distribution and ACB performance but aside of ACB sizing, envelope is not considered in selecting and configuring ACB
- Further research for ACB coupling with envelope is required
- Temperature distribution in cooling mode was found uniform, non-uniform in • heating mode and the uniformity was increased with increase in setpoint
- The temperature difference more than 3°C between head and ankle for a standing person and around 2.5°C for a seated person was found
- Air velocity and in cooling mode was found below ASHRAE standard for thermal comfort (0.2 m/s), the air velocity in heating mode was negligible and close to zero in occupied zone
- The average percentage error between measured and simulated air temperature in space varied from 0% to 5% with an absolute error of 1°C
- Age of Air in heating was found higher, resulting in stagnant air near occupant

Acknowledgements